
Syntactic Parsing (15 Apr 2015)

Structural Descriptions

[[The [dog]] [bit [the [man]]]]

Labeled bracketed structure

[S [NP [det The] [Nom [N dog]]] [VP [V bit] [NP [Det the] [Nom [N man]]]]]

Context Free Grammar

- $G = \langle N, \Sigma, P, S \rangle$ where:
 - N is a set of non-terminal symbols, typically S,A,B,...
 - % S is the starting or goal symbol from N, i.e., S \in N
 - $\gg \Sigma$ is a set of terminal symbols, typically x, y, z, . . . disjoint from N
 - \circledast P is a set of production rules of the form A → β, where:

A is a non-terminal $A \in N$

β is a string of symbols from ($\Sigma \cup N$)

CFGs for Natural Language

- A nonterminal symbol labels a syntactic part (constituent): NP, VP, PP, (Noun, Verb, Det)
- A starting symbol indicates which symbol has to come first; it labels the largest constituent or biggest part: S, ROOT, or TOP
- A terminal symbol labels the smallest part, the actual strings of the language: man, they, swim

CFGs for Natural Language

- A production rule captures the notion of syntactic constituency.
- % 'LHS' is used to indicate the left-hand side of the → , and likewise for 'RHS'.

Rules in Treebanks

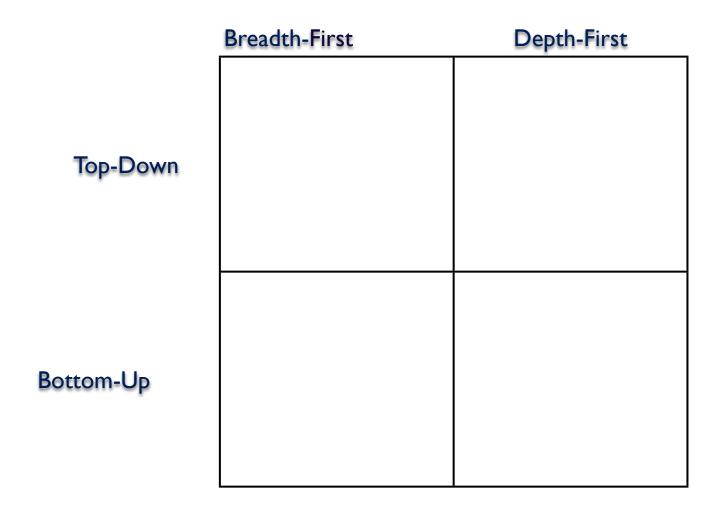
Lots of them! 17,000 in PTB

- Most very flat
- Many tailored to single sentences
- % Number grows linearly with corpus
- Largest number: S, NP, VP

Questions for Parsing

- Is this sentence in the language?
 - FSAs accept the regular languages defined by automaton
 - Parsers accept language defined by CFG
- What is the syntactic structure of this sentence?
 - Syntactic parse provides framework for semantic analysis
 - What is the subject?
 - Useful for e.g. question answering

Parsing as Search


- Search through possible parse trees
- Want one (or more) that derive input
- **Formally, search problems are defined by:**
 - Start state S,
 - Goal state G,
 - Successor Function: Transitions between states,
 - Path cost function

Parse Search Strategies

- Must start with the start symbol
- Must cover exactly the input string
- Correspond to main parsing search strategies
 - Top-down search (Goal-directed search)
 - Bottom-up search (Data-driven search)

Parse Search Strategies

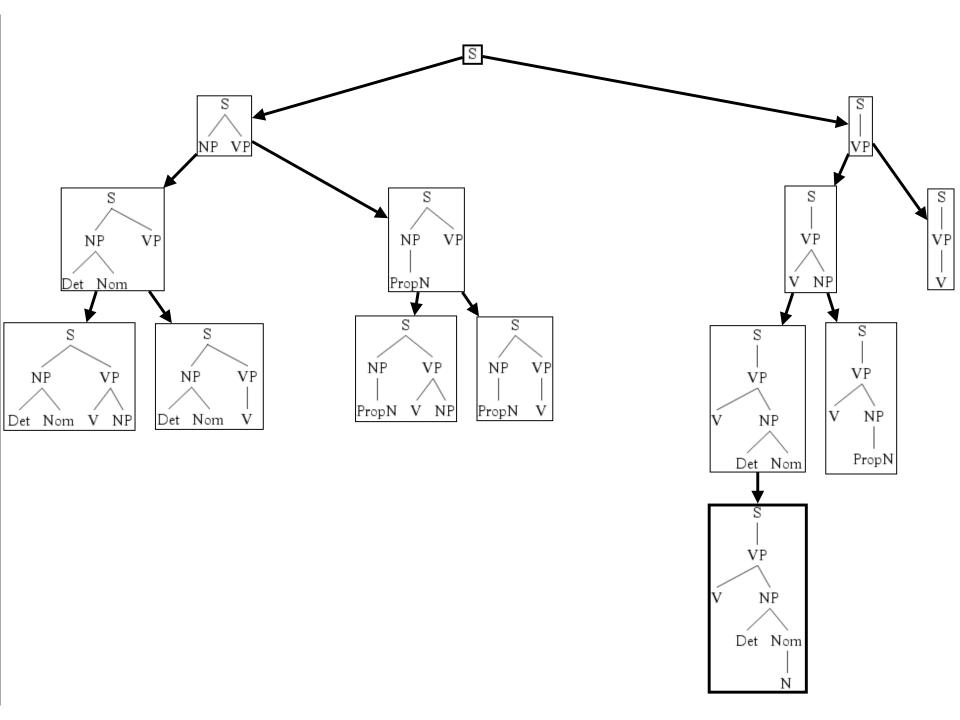
A Toy Grammar

Grammar

Lexicon

 $S \rightarrow NP VP$ $S \rightarrow Aux NP VP$ $S \rightarrow VP$ $NP \rightarrow Pronoun$ $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$ $Nominal \rightarrow Noun$ $Nominal \rightarrow Nominal Noun$ $Nominal \rightarrow Nominal PP$

 $VP \rightarrow Verb$

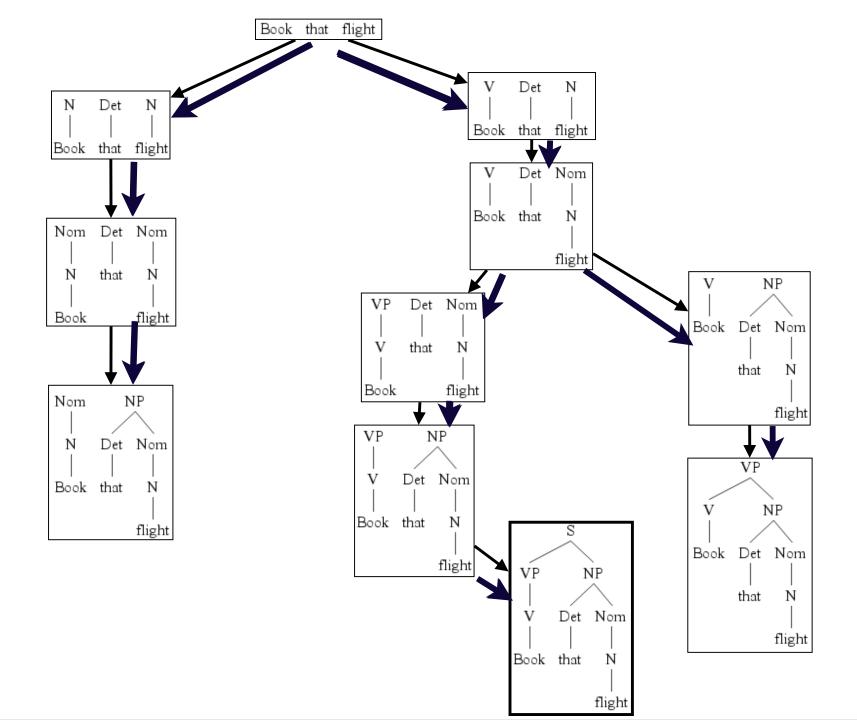

- $VP \rightarrow Verb NP$
- $VP \rightarrow Verb NP PP$
- $VP \rightarrow Verb PP$
- $VP \rightarrow VP PP$

 $PP \rightarrow Preposition NP$

 $\begin{array}{l} Det \ \rightarrow \ that \ | \ this \ | \ a \\ Noun \ \rightarrow \ book \ | \ flight \ | \ meal \ | \ money \\ Verb \ \rightarrow \ book \ | \ include \ | \ prefer \\ Pronoun \ \rightarrow \ I \ | \ she \ | \ me \\ Proper-Noun \ \rightarrow \ Houston \ | \ NWA \\ Aux \ \rightarrow \ does \\ Preposition \ \rightarrow \ from \ | \ to \ | \ on \ | \ near \ | \ through \end{array}$

Top-Down Search

Begin with productions with S on LHS Successively expand non-terminals E.g., NP \rightarrow Det Nominal; VP \rightarrow V NP Terminate when all leaves are terminals **Book that flight**


Pros and Cons of Top-Down Search

- Doesn't explore trees not rooted at S
- Doesn't explore invalid subtrees
- - Produces trees that may not match input
 - May not terminate with recursive rules
 - May rederive subtrees during search

Bottom-Up Search

- **Find all trees that span the input**
 - Start with input string: Book that flight.
- Solution With Section With Section Section
 - E.g., N \rightarrow Book; V \rightarrow Book
- Stop when spanned by S (or no more rules apply)

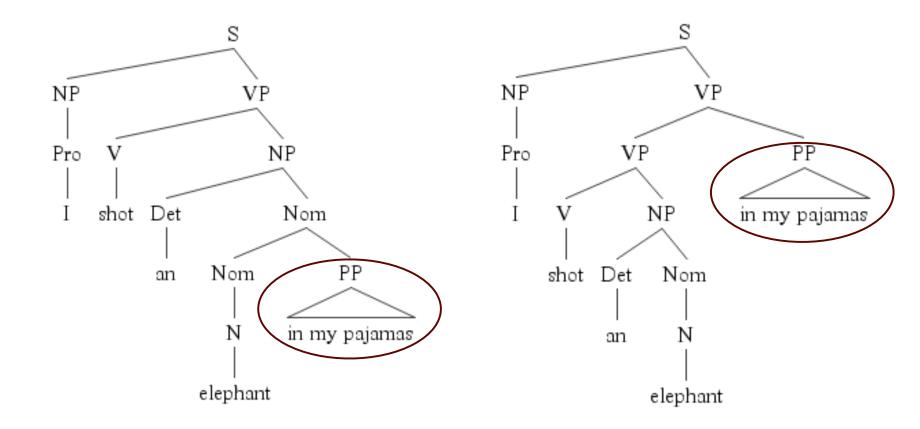
Pros and Cons of Bottom-Up Search

Only explore trees that match input

- **Fewer problems with recursive rules**
- Seful for incremental/ fragment parsing
- - Explore subtrees that will not fit full sentences

Parsing Challenges

Ambiguity


Recursion

Repeated substructure

Parsing Ambiguity

- Lexical ambiguity
 - Book/N; Book/V
- Structural ambiguity:
 - Attachment ambiguity
 - Constituent can attach in multiple places
 - I shot an elephant in my pyjamas.
 - Coordination ambiguity
 - Different constituents can be conjoined
 - Old men and women

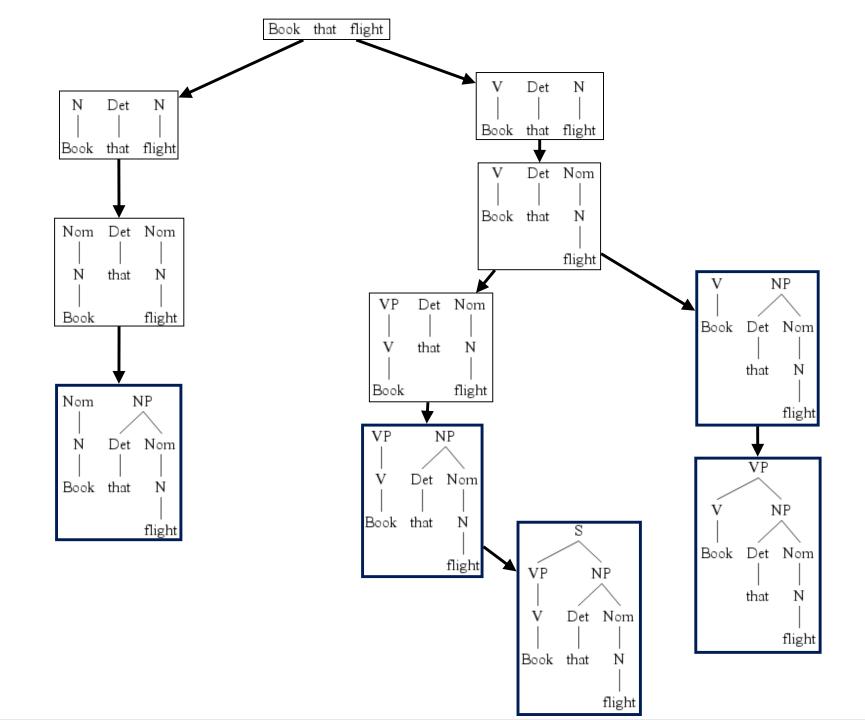
Attachment Ambiguity

Disambiguation

- % Local ambiguity:
 - Ambiguity in subtree, resolved globally
- Global ambiguity:
 - Multiple complete alternative parses
 - Need strategy to select correct one
 - Alternatively, keep all

Resolving Global Ambiguity

Exploit other information


- Statistical
 - Some prepositional structs more likely to attach high/low
 - Some phrases more likely, e.g., (old (men and women))
- Semantic
- Pragmatic (e.g., elephants and pyjamas)

Recursion

- [%] Direct Recursion (e.g., S → S CONJ S)
 - * water under the bridge, Bill ran and Jane jogged
- Indirect Recursion
 - ‰ ... on a thimble in a box on a stool beside a table near a sofa ... NP → DT Nom Nom → Nom PP PP → Prep NP

Repeated Work

- Avoid repeatedly parsing substructures
 - Good subtrees in globally bad parses
 - Overall, bad parses will fail
 - Reconstruction subtrees on other branches
 - Can't avoid with static backtracking
- Store shared substructure for efficiency
 - Typically with dynamic programming

Parsing w/Dynamic Programming

- Makes parsing algorithms (relatively) efficient
 - Polynomial time in input length
 - ✤ Typically cubic (n³) or less
- Several different implementations
 - Cocke-Kasami-Younger (CKY) algorithm
 - Earley algorithm
 - Chart parsing

Chomsky Normal Form (CNF)

CKY parsing requires grammars in CNF

All productions of the form:

$$A \rightarrow BC, or$$

$$A \rightarrow a$$

Most of our grammars are not of this form E.g., S -> Wh-NP Aux NPVP

Hybrid Rule Conversion

- Replace all terminals with dummy nonterminals
 - % Problem Rule: INF-VP → to VP
 - - % INF-VP \rightarrow TO VP
 - TO \rightarrow to

Long Productions Conversion

- Introduce new non-terminals and spread over rules
- Old Rule: S \rightarrow Aux NPVP

Result of CNF Conversion

\mathscr{L}_1 Grammar	\mathscr{L}_1 in CNF
$S \rightarrow NP VP$	$S \rightarrow NP VP$
$S \rightarrow Aux NP VP$	$S \rightarrow X1 VP$
	$X1 \rightarrow Aux NP$
$S \rightarrow VP$	$S \rightarrow book \mid include \mid prefer$
	$S \rightarrow Verb NP$
	$S \rightarrow X2 PP$
	$S \rightarrow Verb PP$
	$S \rightarrow VP PP$
$NP \rightarrow Pronoun$	$NP \rightarrow I \mid she \mid me$
$NP \rightarrow Proper-Noun$	$NP \rightarrow TWA \mid Houston$
$NP \rightarrow Det Nominal$	$NP \rightarrow Det Nominal$
$Nominal \rightarrow Noun$	Nominal \rightarrow book flight meal money
$Nominal \rightarrow Nominal Noun$	Nominal \rightarrow Nominal Noun
$Nominal \rightarrow Nominal PP$	Nominal \rightarrow Nominal PP
$VP \rightarrow Verb$	$VP \rightarrow book \mid include \mid prefer$
$VP \rightarrow Verb NP$	$VP \rightarrow Verb NP$
$VP \rightarrow Verb NP PP$	$VP \rightarrow X2 PP$
	$X2 \rightarrow Verb NP$
$VP \rightarrow Verb PP$	$VP \rightarrow Verb PP$
$VP \rightarrow VP PP$	$VP \rightarrow VP PP$
$PP \rightarrow Preposition NP$	$PP \rightarrow Preposition NP$

Grammatical Equivalence

- Weak equivalence:
 - Recognizes same language
 - ※ Yields different structure
- Strong equivalence
 - Recognizes same languages
 - ※ Yields same structure
- % CNF is weakly equivalent

CKY Algorithm

- Bottom-up parsing algorithm
- **(Relatively)** efficient
- Tabulate substring parses to avoid repeated work

CKY Approach

℁ Use a CNF grammar

- Build an (n+1) x (n+1) matrix to store subtrees
- Se Upper triangular portion
- Incrementally build parse spanning whole input string

Dynamic Programming in CKY

For a parse spanning substring [i,j],

- There must be parses spanning [i,k] and [k,j] for some k.
- Construct parses for whole sentence by building up from stored partial parses
- % To have A → B C in [i,j],
 - We must have B in [i,k] and C in [k,j], for some i<k<j
- CNF grammar forces this for all j>i+1

CKY Approach

- Given an input string S of length n,
 - % Build table (n+1) x (n+1)
 - Indexes MATCH inter-word positions: 0 Book 1 That 2 Flight 3
 - % Cell [i,j] contains all constituents spanning (i,j)
 - % [j-l,j] contains pre-terminals
 - If [0,n] contains START, the input is recognized

Chart Filling Order

- Column-by-column
- Left-to-right
- Bottom-to-top
- ₩ Why?
 - Necessary info available (below and left)
 - Allows online sentence analysis
 - Works across input string as it arrives

Is this a Parser?

Is this a Parser?

Sort of...

℁ It's a recognizer.

What if we want the actual parses?

CKY Example

Book	the	flight	through	Houston
S, VP,Verb,				S.VP.X2, X2, S,VP,
Nominal, Noun [0, 1]	[0,2]	[0,3]	[0,4]	
	Det 🗲	NP		
	[1,2]	[1,3]	[1,4]	[1,5]
		Nominal, ≹loun		Nomina
		[2,3]	[2,4]	[2,5]
$X2 \rightarrow X2 PP$			5	
$S \rightarrow X2 PP$			Prep ◀ [3,4]	[3,5]
$VP \rightarrow X2 PP$				
$VP \rightarrow VP PP$				NP, ProperNoun [4,5]

Learning Probabilities

Simplest: Treebank of parsed sentences **To compute probability of a rule, count: Times LHS is expanded** Times LHS expands to RHS $P(\alpha \rightarrow \beta \mid \alpha) = \frac{Count(\alpha \rightarrow \beta)}{\sum_{\gamma} Count(\alpha \rightarrow \gamma)} = \frac{Count(\alpha \rightarrow \beta)}{Count(\alpha)}$

Example PCFG

Grammar $S \rightarrow NP VP$ [.80] $S \rightarrow Aux NP VP$ [.15] $S \rightarrow VP$ [.05] $NP \rightarrow Pronoun$ [.35] [.30] $NP \rightarrow Proper-Noun$ $NP \rightarrow Det Nominal$ [.20] $NP \rightarrow Nominal$ [.15] [.75] Nominal \rightarrow Noun [.20] Nominal \rightarrow Nominal Noun Nominal \rightarrow Nominal PP [.05] $VP \rightarrow Verb$.35] $VP \rightarrow Verb NP$ [.20] $VP \rightarrow Verb NP PP$ [.10] $VP \rightarrow Verb PP$.15 $VP \rightarrow Verb NP NP$ [.05] $VP \rightarrow VP PP$.15 $PP \rightarrow Preposition NP$ [1.0]

 $Det \rightarrow that [.10] \mid a [.30] \mid the [.60]$ Noun \rightarrow book [.10] | flight [.30] *meal* [.15] | *money* [.05] flights [.40] | dinner [.10] $Verb \rightarrow book$ [.30] | *include* [.30] | *prefer*; [.40] *Pronoun* \rightarrow *I*[.40] | *she*[.05] |me[.15]| you [.40] *Proper-Noun* \rightarrow *Houston* [.60] | NWA [.40] $Aux \rightarrow does [.60] \mid can [40]$ *Preposition* \rightarrow *from* [.30] | *to* [.30] on [.20] | near [.15] through [.05]

Lexicon