Syntactic Parsing (15 Apr 2015)

Structural Descriptions

柤 Bracketed Structure

[[The [dog]] [bit [the [man]]]]]
慗 Labeled bracketed structure
[S [NP [det The] [Nom [N dog]]] [VP [V bit] [NP [Det the] [Nom [N man]]]]]

Context Free Grammar

$\mathrm{G}=\langle\mathrm{N}, \Sigma, \mathrm{P}, \mathrm{S}\rangle$ where：
疄 N is a set of non－terminal symbols，typically S, A, B, \ldots
靿 S is the starting or goal symbol from N ，i．e．，$S \in N$
氆 Σ is a set of terminal symbols，typically x, y, z, \ldots disjoint from N

粼 P is a set of production rules of the form $A \rightarrow \beta$ ，where：

糕 A is a non－terminal $A \in N$
糍 β is a string of symbols from $(\Sigma \cup N)$

CFGs for Natural

Language

漛 A nonterminal symbol labels a syntactic part （constituent）：
NP，VP，PP，（Noun，Verb，Det）
粎 A starting symbol indicates which symbol has to come first；it labels the largest constituent or biggest part：
S，ROOT，or TOP
糍 A terminal symbol labels the smallest part，the actual strings of the language： man，they，swim

CFGs for Natural Language

料 Production rule（re－write rule）：one symbol is rewritten (\rightarrow) as one or more others： NP \rightarrow Det Noun

粈 A production rule captures the notion of syntactic constituency．

糋＇LHS＇is used to indicate the left－hand side of the \rightarrow ，and likewise for＇RHS＇．

Rules in Treebanks

料 Lots of them！17，000 in PTB
糍 Most very flat
糍 Many tailored to single sentences
粈 Number grows linearly with corpus
霜 Largest number：S，NP，VP

Questions for Parsing

糍 Is this sentence in the language？
鲜 FSAs accept the regular languages defined by automaton

湴 Parsers accept language defined by CFG
渋 What is the syntactic structure of this sentence？
粈 Syntactic parse provides framework for semantic analysis
觛 What is the subject？
撛 Useful for e．g．question answering

Parsing as Search

眯 Search through possible parse trees
潾 Want one（or more）that derive input
橉 Formally，search problems are defined by：
糍 Start state S，
棂 Goal state G，
業 Successor Function：
Transitions between states，
業 Path cost function

Parse Search Strategies

粒 Two constraints：
榗 Must start with the start symbol
粠 Must cover exactly the input string
糍 Correspond to main parsing search strategies

泟 Top－down search（Goal－directed search）
糍 Bottom－up search（Data－driven search）

Parse Search Strategies

A Toy Grammar

Grammar	Lexicon
$S \rightarrow$ NP VP	Det \rightarrow that \mid this $\mid a$
$S \rightarrow$ Aux NP VP	Noun \rightarrow book \mid flight \mid meal \mid money
$S \rightarrow V P$	Verb \rightarrow book \mid include \mid prefer
$N P \rightarrow$ Pronoun	Pronoun $\rightarrow I \mid$ she \mid me
$N P \rightarrow$ Proper-Noun	Proper-Noun \rightarrow Houston \mid NWA
$N P \rightarrow$ Det Nominal	Aux \rightarrow does
Nominal \rightarrow Noun	Preposition \rightarrow from \mid to \mid on \mid near \mid through
Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	
$V P \rightarrow$ Verb NP	
$V P \rightarrow$ Verb NP PP	
$V P \rightarrow$ Verb PP	
$V P \rightarrow$ VP PP	
$P P \rightarrow$ Preposition NP	

Top－Down Search

糍 Begin with productions with S on LHS

$$
\text { 潾 E.g., S } \rightarrow \text { NPVP }
$$

䊡 Successively expand non－terminals
楽 E．g．，NP \rightarrow Det Nominal；VP \rightarrow V NP
䱏 Terminate when all leaves are terminals
澲 Book that flight

Pros and Cons of Top－ Down Search

粎 Pros：
糍 Doesn＇t explore trees not rooted at S
蝺 Doesn＇t explore invalid subtrees
粦 Cons：
粠 Produces trees that may not match input
蜞 May not terminate with recursive rules
柤 May rederive subtrees during search

Bottom－Up Search

糍 Find all trees that span the input
糍 Start with input string：Book that flight．
料 Use all productions with current subtree（s） on RHS

$$
\text { 辣 E.g., N } \rightarrow \text { Book;V } \rightarrow \text { Book }
$$

糕 Stop when spanned by S （or no more rules apply）

Pros and Cons of Bottom－Up Search

鼣 Pros：
濨 Only explore trees that match input
糍 Fewer problems with recursive rules
㬎 Useful for incremental／fragment parsing
糋 Cons：
糕 Explore subtrees that will not fit full sentences

Parsing Challenges

粦 Ambiguity
料 Recursion
料 Repeated substructure

Parsing Ambiguity

綦 Lexical ambiguity
糋 Book／N；Book／V
絜 Structural ambiguity：
粸 Attachment ambiguity
粸 Constituent can attach in multiple places
粎 I shot an elephant in my pyjamas．
輊 Coordination ambiguity
彞 Different constituents can be conjoined
繁 Old men and women

Attachment Ambiguity

Disambiguation

咥 Local ambiguity：
韧 Ambiguity in subtree，resolved globally
楽 Global ambiguity：
粈 Multiple complete alternative parses
㴆 Need strategy to select correct one
潾 Alternatively，keep all

Resolving Global Ambiguity

Exploit other information

並 Statistical

柤 Some prepositional structs more likely to attach high／low

歯 Some phrases more likely， e．g．，（old（men and women））

掽 Semantic
粸 Pragmatic（e．g．，elephants and pyjamas）

Recursion

㴊 Direct Recursion（e．g．，S \rightarrow S CONJ S）
静 water under the bridge，Bill ran and Jane jogged
絭 Indirect Recursion
業 ．．．on a thimble in a box on a stool beside a table near a sofa ．．．
NP \rightarrow DT Nom
Nom \rightarrow Nom PP PP \rightarrow Prep NP

料 Can yield infinite searches
e．g．，Top－down search with $S \rightarrow S$ conj S

Repeated Work

糍 Avoid repeatedly parsing substructures
喼 Good subtrees in globally bad parses
彞 Overall，bad parses will fail
粈 Reconstruction subtrees on other branches
糕 Can＇t avoid with static backtracking
膦 Store shared substructure for efficiency
糍 Typically with dynamic programming

Parsing w／Dynamic Programming

糍 Makes parsing algorithms（relatively）efficient
糍 Polynomial time in input length
糍 Typically cubic（ n^{3} ）or less
澲 Several different implementations
需 Cocke－Kasami－Younger（CKY）algorithm
糍 Earley algorithm
糕 Chart parsing

Chomsky Normal Form

（CNF）

糍 CKY parsing requires grammars in CNF
糍 All productions of the form：
䄻 $A \rightarrow B C$ ，or
解 $\mathrm{A} \rightarrow \mathrm{a}$
䱚 Most of our grammars are not of this form E．g．，S－＞Wh－NP Aux NPVP

鳃 Need a general conversion procedue

Hybrid Rule Conversion

潭 Replace all terminals with dummy non－ terminals

糍 Problem Rule：INF－VP \rightarrow to VP
需 New Rules：

$$
\begin{aligned}
& \text { 然 INF-VP } \rightarrow \text { TOVP } \\
& \text { 累 TO } \rightarrow \text { to }
\end{aligned}
$$

Long Productions Conversion

糍 Introduce new non－terminals and spread over rules

潾 Old Rule：$S \rightarrow$ Aux NPVP
蹯 New Rules：
$S \rightarrow X_{1} V P$
$X_{I} \rightarrow$ Aux NP

Result of CNF

Conversion

\mathscr{L}_{1} Grammar	\mathscr{L}_{1} in CNF	
$S \rightarrow N P V P$	$S \rightarrow N P V P$	
$S \rightarrow A u x N P V P$	$S \rightarrow X 1 V P$	
	X1 \rightarrow Aux NP	
$S \rightarrow V P$	$S \rightarrow$ book \| include	prefer
	$S \rightarrow$ Verb NP	
	$S \rightarrow X 2 P P$	
	$S \rightarrow$ Verb PP	
	$S \rightarrow V P P P$	
$N P \rightarrow$ Pronoun	$N P \rightarrow I \mid$ she \mid me	
$N P \rightarrow$ Proper-Noun	$N P \rightarrow T W A \mid$ Houston	
$N P \rightarrow$ Det Nominal	$N P \rightarrow$ Det Nominal	
Nominal \rightarrow Noun	Nominal \rightarrow book \mid flight \mid meal \mid money	
Nominal \rightarrow Nominal Noun	Nominal \rightarrow Nominal Noun	
Nominal \rightarrow Nominal PP	Nominal \rightarrow Nominal PP	
$V P \rightarrow$ Verb	$V P \rightarrow$ book \| include	prefer
$V P \rightarrow \operatorname{Verb} N P$	$V P \rightarrow \operatorname{Verb} N P$	
$V P \rightarrow V e r b N P P P$	$V P \rightarrow X 2 P P$	
	$X 2 \rightarrow \operatorname{Verb} N P$	
$V P \rightarrow V \operatorname{lerb} P P$	$V P \rightarrow V e r b P P$	
$V P \rightarrow V P P P$	$V P \rightarrow V P P P$	
$P P \rightarrow$ Preposition $N P$	$P P \rightarrow$ Preposition $N P$	

Grammatical Equivalence

糕 Weak equivalence：
嚗 Recognizes same language
料 Yields different structure
糍 Strong equivalence
敖 Recognizes same languages
糍 Yields same structure
潾 CNF is weakly equivalent

CKY Algorithm

衫 Bottom－up parsing algorithm
糍（Relatively）efficient
糍 Tabulate substring parses to avoid repeated work

CKY Approach

㪸 Use a CNF grammar
糍 Build an $(\mathrm{n}+\mathrm{I}) \times(\mathrm{n}+\mathrm{I})$ matrix to store subtrees

糍 Use Upper triangular portion
橉 Incrementally build parse spanning whole input string

Dynamic Programming in CKY

粈 For a parse spanning substring［i，j］，
粈 There must be parses spanning $[i, k]$ and $[k, j]$ for some k ．

畦 Construct parses for whole sentence by building up from stored partial parses

糍 To have $A \rightarrow B C$ in $[i, j]$ ，
糍 We must have B in $[i, k]$ and C in $[k, j]$ ，for some $i<k<j$
猬 CNF grammar forces this for all $j>i+1$

CKY Approach

眾 Given an input string S of length n ，
䩮 Build table $(\mathrm{n}+\mathrm{I}) \times(\mathrm{n}+\mathrm{I})$
噛 Indexes MATCH inter－word positions：
0 Book 1 That 2 Flight 3
綦 Cell［i，j］contains all constituents spanning（i，j）
鲜 ［ $\mathrm{j}-\mathrm{I}, \mathrm{j}]$ contains pre－terminals
歯 If $[0, n]$ contains START，the input is recognized

Chart Filling Order

彞 Table fills：
期 Column－by－column
解 Left－to－right
蝶 Bottom－to－top

缐 Why？
糕 Necessary info available（below and left）
静 Allows online sentence analysis
糕 Works across input string as it arrives

Is this a Parser?

Is this a Parser？

㯦 Sort of．．．

繠 It＇s a recognizer．
糍 What if we want the actual parses？

CKY Example

Learning Probabilities

澲 Simplest：Treebank of parsed sentences
然 To compute probability of a rule，count：
粎 Times LHS is expanded潾 Times LHS expands to RHS

$$
P(\alpha \rightarrow \beta \mid \alpha)=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\sum_{\gamma} \operatorname{Count}(\alpha \rightarrow \gamma)}=\frac{\operatorname{Count}(\alpha \rightarrow \beta)}{\operatorname{Count}(\alpha)}
$$

Example PCFG

Grammar		Lexicon	
S \rightarrow NPVP	[.80]	Det \rightarrow that [.10]\| $a[.30] \mid$ the [.60]	
$S \rightarrow$ Aux NP VP	[.15]	Noun \rightarrow book [.10] \| flight [.30]	
$S \rightarrow V P$	[.05]	\| meal [.15]	money [.05]
$N P \rightarrow$ Pronoun	[.35]	\| flights [.40]	dinner [.10]
$N P \rightarrow$ Proper-Noun	[.30]	Verb \rightarrow book [.30] \| include [.30]	
$N P \rightarrow$ Det Nominal	[.20]	\| prefer; [.40]	
$N P \rightarrow$ Nominal	[.15]	Pronoun \rightarrow [.40] \| she [.05]	
Nominal \rightarrow Noun	[.75]	\| me [.15]	you [.40]
Nominal \rightarrow Nominal Noun	[.20]	Proper-Noun \rightarrow Houston [.60]	
Nominal \rightarrow Nominal PP	[.05]	\| NWA [.40]	
$V P \rightarrow$ Verb	[.35]	Aux \rightarrow does [.60] \| can [40]	
$V P \rightarrow$ Verb NP	[.20]	Preposition \rightarrow from [.30] \| to [.30]	
$V P \rightarrow$ Verb NP PP	[.10]	\| on [.20]	near [.15]
$V P \rightarrow$ Verb $P P$	[.15]	\| through [.05]	
$V P \rightarrow \operatorname{Verb} N P N P$	[.05]		
$V P \rightarrow V P P P$	[.15]		
$P P \rightarrow$ Preposition NP	[1.0]		

